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Abstract

Exact inference in large Bayesian Networks (BNs) is computationally intractable,1

limiting its practical application. Markov Chain Monte Carlo (MCMC) methods2

like Gibbs sampling offer a scalable alternative but can be arbitrarily slowed by3

highly coupled variables— addressable by jointly sampling some variables as a4

block. We propose an automated block detection method to amortise inference5

time: training a Graph Neural Network (GNN) to propose blocks directly from the6

BN structure. We further introduce a novel coupling heuristic based on the Markov7

chain’s spectral gap, which we show can be more robust than existing heuristics.8

Our GNN, trained on a dataset of small, randomly generated BNs, generalizes well9

to larger networks, accelerating MCMC sample efficiency in our experiments.10

1 Introduction11

Bayesian Networks (BNs) are a class of probabilistic graphical models that represent complex12

multivariable distributions through local conditional dependencies. They provide an inerptretable13

framework for probabilistic modeling, supporting arbitrary posterior inference queries given observed14

evidence. BNs can be constructed from human expert knowledge, structure learning algorithms, or15

even elicited from large language models. However, exact inference is computationally intractable16

for larger networks. Approximate inference methods like Markov Chain Monte Carlo (MCMC)17

offer a practical alternative for achieving acceptable accuracy within reasonable computation time.18

Gibbs sampling is a common MCMC method for BNs due to its simple computation of local updates19

and 100% acceptance ratio. However, highly coupled variables can severely slow convergence and20

mixing. Blocked Gibbs sampling addresses this by grouping coupled variables into blocks that are21

jointly sampled, breaking out of sticky Markov chain states.22

While practitioners can specify blocks a priori using domain knowledge, automatic blocking methods23

are essential for general applicability. Venugopal and Gogate (2013) present a robust algorithm24

for dynamically proposing blocks during MCMC based on information revealed by initial samples.25

However, this approach faces a fundamental catch-22: effective blocks require sufficient posterior26

samples of the full range of Markov chain modal states to observe coupling, yet collecting this data is27

slowed by the couplings themselves.28

Circumventing this issue, we train a Graph Neural Network (GNN) Kipf and Welling (2017)29

to propose effective blocks directly from BN structure before MCMC starts; this can be used in30

tandem with dynamic block refinement. Our GNN is trained offline on a diverse dataset of randomly31

generated BNs, amortising the computational cost of block identification. We further introduce an32

alternative coupling heuristic based on the Markov chain’s spectral gap, which demonstrates superior33

performance on adversarially coupled BNs compared to existing measures.34

Yoon et al. (2019) trained GNNs to directly do inference, though with fixed approximation error;35

our method fully integrates into MCMC and can be used with existing techniques. GNN-proposed36

blocks can still be refined further dynamically refined using MCMC samples (Venugopal and Gogate,37
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2013). Learned variable sampling distributions allow proposing larger blocks (Wang et al., 2018),38

non-uniform variable/block selection rates speed up convergence, and of course parallelisation across39

chains and variables with non-intersecting Markov blankets is still effective (Gonzalez et al., 2011).40

2 Guiding Block Selection in Gibbs MCMC with GNNs41

In order to propose good blocks, we first must investigate coupling: Section 2.1 derives a good42

heuristic metric to detect coupling between pairs of variables. We use this in the algorithm of Section43

2.2 to propose a block partition B = {Bi}ki=1 to cover the variables of the BN: {Xj}Xj∈V =
⊔
Bi44

(though in some cases overlapping blocks are better). Finally in Section 2.3, we show how we train a45

GNN to predict this coupling metric; put together we can propose blocks for an arbitrary input BN.46

2.1 Deriving the spectral gap coupling heuristic47

For a finite discrete-time Markov chain (S, T, µ0) of state space S, transition matrix Tij = P (Zt+1 =48

sj |Zt = si) and initial distribution Z0 ∼ µ0, convergence in total variation distance (TVD) to49

the stationary distribution π is governed by its spectral gap Levin and Peres (2017), per the bound50

||µT
0 T

n − πT ||TV = O(λn
2 ), where λ2 ̸= 1 is the second-largest eigenvalue. The spectral gap51

γ = 1− λ2 thus provides a natural basis for block selection. Unfortunately, computing the spectral52

gap for multivariable chains is impractical except in special cases (see e.g. Chimisov et al. (2018)),53

requiring enumeration of an exponentially large product state space.54

An important simplification that Venugopal and Gogate (2013) make is to consider only variable55

pairs. For two variables X,Y in a BN, the joint posterior π(X,Y ) can be feasibly estimated in a short56

MCMC run as the |X | × |Y| matrix P . The hellinger distance of P vs its independent assumption57

rank one approximation, Q = pXpTY , where e.g. (pX)x =
∑

y∈Y Pxy, is a good metric of coupling58

as if the indepedence approximation is exact, X and Y would seem to be not at all coupled. Their59

proposed heuristic is thus HD(P,Q) := 1√
2

√∑
i,j(

√
Pij −

√
Qij)2.60

We develop a spectral gap based pairwise score by constructing an averaged subset transition matrix61

T (X,Y ) : |X | × |Y| → |X | × |Y| that models marginal dynamics for variables X,Y under standard62

Gibbs sampling. This decomposes as T (X,Y ) = 1
2T

(X,Y )
X + 1

2T
(X,Y )
Y , where T

(X,Y )
Y represents63

sampling Y with X fixed. Denoting their joint Markov Blanket as MB(X,Y ) = MB, the transition64

probabilities T
(X,Y )
Y : (x0, y0) → (x0, y

′) are derived by averaging over the distribution of MB,65

which we approximate as MB ∼ π(MB|x0, y0) (as we perform Gibbs sampling over the whole BN)66

PGibbs(Y |X = x0, Y = y0,MB) ∝ P (Y |Pa(Y ))
∏

Z:Y ∈Pa(Z)

P (Z|Pa(Z)) (1)

PGibbs(Y |X = x0, Y = y0) ≈
∫

π(MB|x0, y0)PGibbs(y|MB, x0)dMB (2)

Since π(MB|x0, y0) is intractable, we approximate by averaging over y0 ∼ π(Y = y|X = x) =67 ∫
π(MB|x)P (y|MB, x)dMB to get uniform probabilities T̃ (X,Y )

Y : (x0, ∗) → (x0, y
′). This repre-68

sents a best-case mixing scenario where sampling y′ jumps straight to the true posterior π(Y |X = x0),69

so is a lower bound for mixing time of the actual Gibbs chain.70

EY0∼π(Y |x0) [PGibbs(Y |X = x0, Y = y0)] ≈ (3)∫ [∫
π(MB|x0, y0)PGibbs(y|MB, x0)dMB

]
π(y0|x0)dy0 (4)∫ [∫

π(MB|x0, y0)π(y0|x0)dy0

]
PGibbs(y|MB, x0)dMB = (5)∫

π(MB|x0)PGibbs(y|MB, x0)dMB = π(Y |X = x0) (6)
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This allows us to derive an approximate matrix T̃ (X,Y ) and compute its spectral gap using only the71

posterior π(X,Y ): the same information required for the Hellinger distance heuristic. While these72

heuristics perform similarly on aggregate across random BNs, in certain adversarially constructed73

BNs (e.g. see A.2) spectral gap substantially outperforms Hellinger distance for block proposals.74

2.2 Adapting the greedy pairwise heuristic blocking algorithm75

We adapt the greedy block merging algorithm from Venugopal and Gogate (2013). Given a pairwise76

distance function ρ(X,Y ) between variables in the BN, where larger values indicate stronger coupling,77

we construct a block partition B of a BN of n variables. Starting with n singleton blocks, we78

iteratively merge the pair of blocks with maximum inter-block score sum
∑

X∈Bi, Y ∈Bj
ρ(X,Y )79

(or mean/max). We compare replacing hellinger distance based ρHD with spectral gap We explore80

replacing the hellinger distance based ρHD with one from spectral gap ρspectral. For simplicity we81

constrain merged block size to a uniform cap rather than via more precise computational cost of82

Gibbs sampling each block’s joint distribution — otherwise larger blocks are generally better.83

2.3 Producing block proposals with GNNs84

GNNs provide a natural architecture to analyse an input BN so as to produce block proposals. Rather85

than learning to propose blocks directly, we supervise train the GNN to produce either ρHD or ρspectral86

with a final bilinear layer between node embeddings. For ease of computing pairwise posteriors for87

these ground truth heuristics, we limit our training dataset to randomly generated BNs of 10-40 nodes88

and average degree 1.7. Despite this constraint, our GNNs generalise effectively to larger networks,89

with spectral gap showing slight performance advantages over Hellinger distance: see Figure 1.90

Loopy Belief Propagation (LBP) Koller and Friedman (2009) inspires our architecture through its ef-91

fective graph-based message passing for computing single variable marginal posteriors. LBP operates92

on factor graphs, where factors generalize Conditional Probability Tables (CPTs) P (X|Pa(X))93

by removing normalisation constraints. We convert BNs to factor graphs by replacing each CPT94

hyperedge P (X|Pa(X) = {Yi}deg(X)
i=1 ) with a factor node FX . Variable nodes X,Y1, ..., Ydeg(X)95

connect bidirectionally to FX , enabling distinct message passing phases.96

We employ 2 relational graph convolution layers Schlichtkrull et al. (2018) with GRU units Cho et al.97

(2014) across 2 message passing rounds. While deeper networks with additional rounds would likely98

improve performance, scaling proved challenging; future work could explore alternative architectures99

like graph attention networks Veličković et al. (2018).100

We trained on 22,732 discrete BNs using an 80-20 train-validation split. CPT encoding constrains our101

architecture: we flatten each CPT as an initial node feature vector of size N
Np+1
d (max domain size102

Nd = 5, max number of parents Np = 6) for factor nodes as well as a factor indicating one-hot flag,103

while variable nodes are zero intialised. Edge types encode direction (to/from factor) and position104

(0 for child, 1, ..., Np for parents), determining relational graph convolution parameters. Following105

LBP’s un-normalised factors, we handle evidence by disconnecting observed variables from their106

factors and contracting those CPTs to conforming entries, which become unnoramlised. To encourage107

GNN comprehension across all factors, we further add multiplicative noise to all CPTs making them108

all unnormalised - this improves performance.109

Randomly generated BNs were filtered to fit the max number of parents constraint, with CPTs110

deliberately extremised with higher occurence of entries in [0.99, 1.0] to encourage highly coupled111

variables and hence the presence of some higher spectral gap / hellinger distance scores. Additional112

training details appear in Appendix A.1.113

3 Experiments114

We evaluate our method’s practical utility, particularly generalisation performance on larger BNs,115

where exact inference is intractable.116

We test our GNN’s block proposal performance on 100 BNs of 85-115 nodes each, measuring mean117

TVD between MCMC 200-sample predicted and “ground truth” (7,000-sample) single variable118

marginals. To account for stochasticity in highly coupled networks, we average results across 25119

3



(a) Maximum block-size 2 (b) Maximum block-size 4

Figure 1: GNN block proposals on 100 small BNs (10-40 nodes) test-set achieve lower mean TVDs
than Gibbs and the control of random local blocking, across a range of MCMC sample sizes. Mean
and 95% confidence intervals shown.

independent runs per BN. Figure 2 shows that both GNN-predicted spectral gap and Hellinger120

distance blocking substantially outperform random local blocking across maximum block sizes (2121

and 4 shown). Spectral gap shows only very modest improvements over Hellinger distance.122

Figure 2: 200 sample MCMC runs
of various maximum block-sizes, on
100 large BNs (85-115 nodes). GNN
guided block proposals generalise
well to larger BNs where exact infer-
ence is infeasible, outperforming the
random local blocking control; spec-
tral slightly outpeforms Hellinger.
Means shown as green triangles.

4 Conclusion123

We presented a method to accelerate MCMC inference in Bayesian Networks using Graph Neural124

Networks to propose variable blocks for joint sampling. This amortised approach circumvents the125

catch-22 of dynamic blocking methods that require samples to identify the couplings that slow126

sampling. Our experiments demonstrate that GNN-proposed blocks, trained on spectral gap or127

Hellinger distance heuristics, substantially accelerate posterior convergence on large networks.128

Future work could explore more expressive architectures like Graph Attention Networks with addi-129

tional layers, to better capture global dependencies. A more ambitious direction would be to replace130

heuristic supervision with direct block proposal mechanisms trained via reinforcement learning on131

convergence speed, perhaps even with active exploration of sampling moves. Further analysis is132

warranted to characterize the topological or parametric properties of BNs for which our proposed133

spectral gap heuristic offers the greatest advantage over hellinger distance.134
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A Technical Appendices and Supplementary Material161

Technical appendices with additional results, figures, graphs and proofs may be submitted with162

the paper submission before the full submission deadline (see above), or as a separate PDF in the163

ZIP file below before the supplementary material deadline. There is no page limit for the technical164

appendices.165

A.1 GNN training and examples166

We trained both the spectral gap and hellinger distance predicting GNNs on a single A600 for 20167

epochs each. We used pyAgrum’s random bayesian network generator, which produces diverse168

graphs, of varying degree (of given average, 1.7), varying CPTs (which we further extremised to169

promote coupling), varying domain size up to a given cap (we constrained to Nd = 5). We rejection170

sample out BNs satisfying the max number of parents constraint (Np = 6), and finally randomly171

choose a number of evidence variables and their observed assignments, of between 1 and 20% of the172

BN’s variables.173

For spectral gap, we trained the GNN to predict the second largest eigenvalue of the approximate174

Markov chain subset transition kernel of a pair of variables in the BN. For our randomly generated175

BNs, this is quite an unbalanced distribution, with high concentration of values close to 0, same for176

hellinger distance - however a few pairs of nodes have higher values corresponding to a higher degree177

of coupling. In order to encourage the GNN to learn not just to predict 0 distance uniformly, we178

actually employ mean cubed loss rather than mean squared, to more sharply penalise large errors.179

A.2 Example Adversarial BN requiring spectral gap analysis180

We constructed by hand a small BN of three nodes X,Y, Z and conditional structure Y → X; Y →181

Z where both X,Y and Y, Z are desirable blocking candidates. However assuming a max block-182

size of 2 where we only do a partition style blocking, the spectral gap and hellinger distance183

metrics disagree on which is preferential to block. Y is a root node with uniform distribution184

P (Y = i) = 0.25 for i ∈ {0, 1, 2, 3}, and the CPTs of P (X|Y ) and P (Z|Y ), shown in Figures 5b185

and 5c, both ensure that the marginal probabilities P (X) and P (Z) are likewise uniform. The far more186
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(a) GNN 2nd largest eigenvalue λ2

predictions. Corr-coeff 0.79
(b) GNN Hellinger distance predic-
tions. Corr-coeff 0.72

(c) MCMC convergence for differ-
ent blocking methods

Figure 3: GNN predictive accuracy of pairwise variable distance metircs, and MCMC convergence
performance, shown for a single validation set BN of 19 nodes.

(a) GNN 2nd largest eigenvalue λ2

predictions. Corr-coeff 0.77
(b) GNN Hellinger distance predic-
tions. Corr-coeff 0.65

(c) MCMC convergence for differ-
ent blocking methods

Figure 4: GNN predictive accuracy of pairwise variable distance metircs, and MCMC conver-
gence performance for a real life BN of 37 nodes: https://www.bnlearn.com/bnrepository/
discrete-medium.html#alarm, with evidence VENTALV: 0, HYPOVOLEMIA: 1, INSUF-
FANESTH: 0, HRBP: 1

extreme, 2x2-modal concentration of probabilities in P (X|Y ) actually lead to far slower convergence187

of the Markov chain, as evidenced in Figure 5a, unlike the more weakly 4-modally concentrated188

coupling in P (Z|Y ). Hellinger distance scores are however insensitive to this large discrepancy,189

indeed giving preference to blocking Z, Y over X,Y : HD(X,Y ) = 0.532 and HD(Y, Z) = 0.543.190

The eigenvalues of the approximate transition matrices T̃ (Y,Z) has 2nd largest eigenvalue 0.8652 so191

spectral gap 0.1348 as opposed to T̃ (X,Y ) which has λ2 = 0.9994 and so a far smaller spectral gap192

of 0.0006, so spectral gap based blocking correctly blocks X,Y . In this case random local blocking193

blocks correctly half of the time.194
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(a) MCMC convergence for max block-size 2

(b) X Given Y CPT

(c) Z Given Y CPT

Figure 5: Adversarial 3 node example BN Y → X; Y → Z has high degrees of coupling, but
magnitudes more so between X,Y than Z, Y . The spectral gap heuristic correctly identifies this
unlike hellinger distance, and so exhibits far better MCMC convergence. Shown here is the
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